THERMAL CONDITIONS OF ELECTRONIC INSTRUMENTS
OF CASSETTE CONSTRUCTION WITH FORCED VENTILATION
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A general approach is considered for the calculation of the temperature field of a ventilated
electronic instrument of cassette construction through the reduction of its heated zone to

a uniform body. An approximate solution of the problem is proposed and the results of
calculations are compared with experimental data.

Ventilated electronic instruments of cassette construction are widely used in technology, The search
for their optimum construction is connected with the analysis of the thermal conditions of the instrument,
which necessitates the improvement of the methods of calculating their temperature fields. The thermal
model of an instrument of cassette construction can be represented in the form of a uniform parallelepiped
with distributions of heat sources and sinks. The role of the latter is filled by gas streams passing through
and carrying with them part of the energy from the instrument. A basis for this model as well as its
mathematical description in the form of a system of equations for the temperature fields of the cassettes
and the interlayers of gas between them are presented in [1] for the case of natural ventilation. The same
system of equations will clearly also be valid for the forced ventilation of an instrument. The difference
will consist only in the means of determining the flow rate of gas through the instrument: with natural ven-
tilation additional equations are needed to calculate the gas flow rate while for forced ventilation the flow
rate is assumed to be known., '

The temperature field is described by the system of equations [1]
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In Egs. (1) the volumetric coefficient of convective heat exchange @, is connected with the local coef-
ficient of heat exchange a by the dependence [1]
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’x The coordinate system is set up as shown in Fig. 1, It is
\ assumed that the temperature variation along the width of the
]
|
|
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7% av cassettes (along the z axis) is insignificant, The latter assumption

;ﬂlﬂ is not necessary in principle and is adopted mainly to reduce the
/(jﬁ calculations. Moreover, in real instruments with forced ventila-

!
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/1 | i ! Pyrdfy tion the important temperature variation occurs in the direction
/L'—*l . = > 7 of air movement {(along the x axis) and perpendicular to the plane
~ / 0 /7, of the cassettes (along the y axis).

7/ yd . The values oy and oy in (2) and (3) allow for the heat ex-
a__/ ay lde, change with the surrounding medium from the ends of the cassettes
z and from the faces of the heated zone which are perpendicular to
the y axis, respectively. In general the conditions (2) and (3) can
reflect the presence of conductive heat sinks at the boundaries of
the heated zone of the instrument.

Fig. 1. For calculation of the

temperature field of an electronic

instrument of cassette construc-

tion. We will seek an approximate solution of the problem by the
method of successive averaging of the unknown function [2, 3].

- Let us introduce the averaging operator Iy
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We apply the operator Iy to all the terms of Eqs. (1), allowing for the conditions (2) and (4), and then
combine the results of the termwxse action of the operator
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Here ozv is the averaged value of the volumetric coefficient of convective heat exchange, for the calculation
of which one must know the coefficients of convective heat exchange o in the channels divided by the mean
integral temperature difference:
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Let us adopt the specific assumptions for the method of averaging [2, 3]

_ 1‘} ,
ﬁﬂi*mzmﬁw,—%=%#h@,—ﬁ—%#h@ M

Then (5) can be rewritten in the following form:
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We find the value of 3, from (8b) and substitute it into (8a):
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Let us apply the operator Iy to the boundary conditions (3)
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For the solution of Eq. (9) with the condition (10) it is necessary to know the form of the dependences
Ezv =F@), C—lv = Fy(y), and w = Fy@y). We will confine ourselves to an analysis of the relatively simple
case when the values of &y, Ty, and w do not depend on the coordinates x and y. In addition, we assume that
the air temperature at the entrance to the apparatus is equal to the temperature of the surrounding medium
(in = 0), that heat exchange of the end surfaces of the cassettes can be neglected (ayy = axy = 0), and we
will examine a variant of the problem which is symmetrical relative to the x0z plane (ozyi =y = ozy). The
latter permits us to write the symmetry condition
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Let us return to Eq. (1a) where in accordance with [2, 3] we make the approximate substitution
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We substitute the value d%§/dy® from (14) into (la) in place of 828/ 9y? and obtain an equation which
in contrast to (1a) will be approximate. In order to emphasize this let us replace the values ¢ and Sy with
the new designations u and uy for the unknown approximate superheats, retaining the former meaning of
the indices:
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The latter equation contains the two unknown values u and uz;. A second equation can be found by
using (lb), which in the end leads to the necessity of solving a differential equation of third order. To avoid
an increase in the order of the differential equation let us adopt another variant of the analysis: let us use
the results of the averaging already performed to find the additional dependence between the values u and
uy.

Let us isolate a volume dV = bxdy in the heated zone (see Fig. 1). The heat sources in this volume
emit the power dP = q, = bxdy. The superheat ug of the air at the exit from the volume dV arises due to the
heat flux dP; = wbuydy. The heat flux dP; = —A\b(du /dx)dy flows through the face bdy at a distance x from
the entrance of air to the heated zone of the apparatus. The heat flux Ps in the direction of the y axis flows
through the volume dV, changing by the value dP; = bxdy. The change dg; in the density @, of the heat flux
density g3 of the heat flux P; averaged over the x axis is equal to
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We can find dig by substituting into the right side of the latter equation the value 828/ 0y® from (13) and (14).
Then dP; can be represented in the following form:
dPy = (1 — @) bxg dx. (16)
The heat flux dP, through the face bdy at x = 0 is equal to
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Here Egs. (2) and (7) and the substitution 4 ~ u are used. Because of the assumption that ayy = 0 we have
dP4 = Q. )

According to the law of conservation of energy we have

dP = dP, 4 dP, - dP,. 1n
Substituting the values of the heat fluxes into (17), we obtain
7“1 da‘ N (pqu
= e L Py
“a w dx ® (18

We then substitute the value of uy found into (15):
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By integrating Eq. {19), using Eq. (18), the boundary conditions, and the assumptions adopted, we obtain
the following approximate equations for u, and u:
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The solution (20) will have a simpler form if in the derivation of the equations we take A\ — 0 (constant
flux density from the surface of the cassettes) or Ay — « (the temperature of the cassettes does not vary in
the direction of air movement). In the first case we will have
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The transition to Egs. (21) and (22) does not give a substantial difference from a calculation accord-
ing to Egs. (20) if k > 10 or k < 0.01, respectively.

and in the second case

The multiplier ¢ in (20)-(22) is given in (12) and allows for the heat exchange of the lateral surface
of the heated zone of the instrument with the surrounding medium. At ¢ = 1 the surrounding medium does
not affect the temperature of the cassettes. In order to determine ¢ one must first find the values of y;
from Egs. (7) by substituting into them the superheats calculated using (20)-(22) at ¢ = 1. After this Eqgs.
(9) and (12) permit an estimate of the variation in the temperature field in the direction of the y axis.
Having determined ¢ = ¢(y) one can approximately calculate the two-dimensional temperture field of the
heated zone from Egs. (20)-(22). Further refinement can be accomplished by the method of successive
approximations.

For practical calculations of the temperature field one must first calculate the values o, 7y, and
2. The calculation of the last three values is examined in sufficient detail in [1]. Simplified dependences
for the determination of o are presented in [4] for cassettes with smooth surfaces.

The results of a calculation of the temperature field by the approximate method suggested are com-
pared with the data of an experimental study of several models of typical constructions of cassette elec-
tronic instruments [5]. The calculated (u) and measured (J) superheats with respect to the surrounding
medium were compared at each experimental point: '
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The series of studies of the m superheats compared for each model was generalized by the dependence

o=—1  Wa (23)

For each model the value of ¢ did not exceed 12%.

NOTATION

X is the coordinate coinciding with direction of air movement;
y is the coordinate perpendicular to plane of cassettes;
I, 2a, b are the dimensions of heated zone in the directions of the x, y, and z axes, respectively;
28 is the thickness of cassette;
h is the distance between cassettes;
d, u are the superheats of surface of cassettes relative to temperature of surrounding medium;
¥q, Uy are the mean flow rate superheat of air in gap between cassettes;
o is the local coefficient of convective heat exchange in channel;
Qy is the volumetric coefficient of convective heat exchange;
ox, Oy are the coefficients of heat transfer from heated zone to surrounding medium;
s Ay are the effective coefficients of thermal conductivity of heated zone;
cp, G are the specific heat capacity and mass flow rate of air in channel between cassettes;
Ay is the volumetric density of heat sources;
upper bar is the averaged value of parameter.
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